Для преодоления этих трудностей можно произвести декомпозицию переменной отношения СЛУЖАЩИЕ_ПРОЕКТЫ_ЗАДАНИЯ на две переменных отношений – СЛУЖ {СЛУ_НОМ, СЛУ_УРОВ, СЛУ_ЗАРП} и СЛУЖ_ПРО_ЗАДАН {СЛУ_НОМ, ПРО_НОМ, СЛУ_ЗАДАН}. На основании теоремы Хита эта декомпозиция является декомпозицией без потерь, поскольку в исходном отношении имелась FD {СЛУ_НОМ, ПРО_НОМ}
СЛУ_ЗАДАН. На показаны диаграммы множеств FD этих отношений, а на – их значения.
Рис. 8.3. Диаграммы FD в переменных отношений СЛУЖ и СЛУЖ_ПРО_ЗАДАН
Теперь мы можем легко справиться с операциями обновления.
Рис. 8.4. Значения переменных отношений
Для преодоления этих трудностей произведем декомпозицию переменной отношения СЛУЖ на две переменных отношений – СЛУЖ1 {СЛУ_НОМ, СЛУ_УРОВ} и УРОВ {СЛУ_УРОВ, СЛУ_ЗАРП}. По теореме Хита, это снова декомпозиция без потерь по причине наличия, например, FD СЛУ_НОМ
СЛУ_УРОВ. На показаны диаграммы FD этих переменных отношений, а на – их возможные значения.
Рис. 8.5. Диаграммы FD в отношениях СЛУЖ1 и УРОВ
Как видно из , это преобразование обратимо, т. е. любое допустимое значение исходной переменной отношения СЛУЖ является естественным соединением значений отношений СЛУЖ1 и УРОВ. Также можно заметить, что мы избавились от трудностей при выполнении операций обновления.